miR-135a-5p inhibits 3T3-L1 adipogenesis through activation of canonical Wnt/β-catenin signaling.
نویسندگان
چکیده
MicroRNAs are endogenous, conserved, and non-coding small RNAs that function as post-transcriptional regulators of fat development and adipogenesis. Adipogenic marker genes, such as CCAAT/enhancer binding protein α (Cebpa), peroxisome proliferator-activated receptor γ (Pparg), adipocyte fatty acid binding protein (Ap2), and fatty acid synthase (Fas), are regarded as the essential transcriptional regulators of preadipocyte differentiation and lipid storage in mature adipocytes. Canonical Wnt/β-catenin signaling is recognized as a negative molecular switch during adipogenesis. In the present work we found that miR-135a-5p is markedly downregulated during the process of 3T3-L1 preadipocyte differentiation. Overexpression of miR-135a-5p impairs the expressions of adipogenic marker genes as well as lipid droplet accumulation and triglyceride content, indicating the importance of miR-135a-5p for adipogenic differentiation and adipogenesis. Further studies show that miR-135a-5p directly targets adenomatous polyposis coli (Apc), contributes to the translocation of β-catenin from cytoplasm to nucleus, and then activates the expressions of cyclin D1 (Ccnd1) and Cmyc, indicating the induction of canonical Wnt/β-catenin signaling. In addition, inhibition of APC with siRNA exhibits the same effects as overexpression of miR-135a-5p. Our findings demonstrate that miR-135a-5p suppresses 3T3-L1 preadipocyte differentiation and adipogenesis through the activation of canonical Wnt/β-catenin signaling by directly targeting Apc. Taken together, these results offer profound insights into the adipogenesis mechanism and the development of adipose tissue.
منابع مشابه
miR-204-5p promotes the adipogenic differentiation of human adipose-derived mesenchymal stem cells by modulating DVL3 expression and suppressing Wnt/β-catenin signaling
MicroRNAs (miRNAs or miRs) play an important regulatory role during adipogenesis, and have been studied extensively in this regard. Specifically, the switch between the differentiation of mesenchymal stem cells (MSCs) towards adipogenic vs. osteogenic lineages is regulated by miR-204 which controls the expression of Runx2. However, the association between miR-204-5p and the Wnt/β-catenin signal...
متن کاملThe Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملEffects of microRNA-135a on the epithelial–mesenchymal transition, migration and invasion of bladder cancer cells by targeting GSK3β through the Wnt/β-catenin signaling pathway
This study investigated the effects of microRNA-135a (miR-135a) targeting of glycogen synthase kinase 3β (GSK3β) on the epithelial-mesenchymal transition (EMT), migration and invasion of bladder cancer (BC) cells by mediating the Wnt/β-catenin signaling pathway. BC and adjacent normal tissues were collected from 165 BC patients. Western blotting and quantitative real-time PCR were used to detec...
متن کاملGremlin 2 inhibits adipocyte differentiation through activation of Wnt/β-catenin signaling.
The primary function of white adipose tissues is to store excess energy. The current study aimed to investigate the roles of Gremlin 2 (Grem2), a glycoprotein in adipogenesis. Using polymerase chain reaction‑based microarrays, it was determined that Grem2 was markedly downregulated in adipose tissues from obese animals and humans. In addition, 3T3‑L1 cells were used to investigate the details o...
متن کاملCurcumin represses mouse 3T3-L1 cell adipogenic differentiation via inhibiting miR-17-5p and stimulating the Wnt signalling pathway effector Tcf7l2
Understanding mechanisms underlying adipogenic differentiation may lead to the discovery of novel therapeutic targets for obesity. Wnt signalling pathway activation leads to repressed adipogenic differentiation while certain microRNAs may regulate pre-adipocyte proliferation and differentiation. We show here that in mouse white adipose tissue, miR-17-5p level is elevated after high fat diet con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular endocrinology
دوره 52 3 شماره
صفحات -
تاریخ انتشار 2014